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We examine the energy flows in a three-dimensional model of a granular system consisting ofN inelastic
hard spheres contained in an open cylinder of radiusR under the influence of gravity. Energy is supplied to the
system in the vertical direction by a vibrating base and is transferred to the perpendicular directions through
particle-particle collisions. We examine how the local and global dissipation of energy by particle-particle and
particle-wall collisions depends on the number of particles, the velocity of the vibrating base, and the restitu-
tion coefficients.
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I. INTRODUCTION

In an isolated granular system of inelastic particles,
energy-dissipating collisions rapidly lead to a total cessation
of motion. If an energy source, such as a vibrating wall, is
present, a fluidized steady state can be maintained. The
steady state is characterized by a balance of the energy input
with the energy dissipated through particle-particle and
particle-boundary collisions. Although there is a superficial
resemblance, these nonequilibrium steady-state granular sys-
tems have radically different properties from their equilib-
rium counterparts in systems of elastic particles. Examples
include non-Maxwellian velocity distributions[1–6], a lack
of energy equipartition between rotational and translational
degrees of freedom in a system of inelastic rough spheres
[7], and a lack of equipartition of kinetic energy between the
components of a granular mixture[8–17].

Moreover, as has been observed in several studies, the
breakdown of equipartition in granular systems extends to
the translational degrees of freedom. In an experimental
study of a three-dimensional vibrofluidized system, Wildman
et al. [18] showed that the granular temperature in the direc-
tion parallel to the energy injection is larger than in the per-
pendicular directions. Morgado and Mucciolo[19], using a
variant of the direct simulation Monte Carlo method, dem-
onstrated a similar effect in a two-dimensional vibrated
granular system. Prevostet al. [20] showed that velocity cor-
relations in vibrated monolayers are different in the longitu-
dinal and transverse directions. Barratet al. [21] studied a
vertically shaken three-dimensional system and noted that
the injected energy is transferred to the perpendicular direc-
tions through particle-particle collisions. This results in ap-
parent restitution coefficients that are greater than unity for
some collisions, and lead Barratet al. to propose the random
restitution coefficient model, in which the restitution coeffi-
cient of each collision is randomly sampled from a given
distribution [21–23].

Various theories of vibrated granular media have been
proposed[24–29]. Warr et al. [25] used expressions for the
particle-particle dissipation and the power supplied to obtain

a scaling relationship for the average granular temperature.
Their experimental results were not consistent with the
theory, however. Kumaran[26] sought to improve the theory
by using a Maxwellian velocity distribution. This had the
effect of modifying the prefactors but not the exponents of
the scaling relations. McNamara and Luding[28] reviewed
and extended the theories and compared their predictions to
the results of event-driven simulations. The comparison con-
firmed that the Kumaran scaling relationship applies only in
dilute systems. Sunthar and Kumaran[29] subsequently ex-
tended Kumaran’s analysis to dense systems. More recently,
Brey et al. [30] presented a hydrodynamic description of an
open vibrated system in two and three dimensions. They
showed that the temperature profile exhibits a minimum as a
function of height, and also obtained an accurate description
of the energy dissipated.

In this paper we explore the anisotropy of the energy con-
sumed or supplied by particle-particle collisions in a three-
dimensional, vibrofluidized system of inelastic, hard spheres.
More specifically, we resolve the total energy supply or con-
sumption into directions parallel and perpendicular to the
energy source. Energy balances show that collisions con-
sume energy in the parallel direction and supply it to the
perpendicular directions. We examine the dependence of
these quantities on the particle-particle and particle-wall res-
titution coefficients, as well as the velocity of the vibrating
base. We also examine the dependence of thelocal energy
consumption/supply on position and the above system pa-
rameters.

II. SIMULATION

A. Simulation algorithms

We use a three-dimensional, event-driven simulation of
inelastic, hard spheres to model granular particles in a cylin-
der in the presence of gravity. Identical spheres with a diam-
eter d and massm are placed in an infinitely tall cylinder
with a radiusR (see Fig. 1). The simulation generates a se-
quence of particle-particle, particle-wall, and particle-base
collisions. The base vibrates with a symmetric, saw-tooth
waveform with amplitudeA and frequencyn. This form was
chosen for simplicity, and changing to another symmetric
form, e.g., a sine wave, is not expected to have much influ-*Electronic address: talbot@duq.edu
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ence on the steady-state properties of the system[31]. The
velocity of the base for this type of waveform isvb=4An.

The simulations were initialized by randomly placing par-
ticles in the cylinder and assigning velocities selected from a
Maxwell distribution. The particles were then allowed to
evolve from the initial configuration to a steady state before
data was collected for the average values presented in this
paper.

The particle-particle collisions in the computer simulation
conserve momentum, but dissipate energy. Although several
models have been proposed for inelastic collisions[21,32],
we use the simplest approach, i.e., a constant restitution co-
efficient. This choice has produced results that are in good
agreement with experiment[8,9,12,25,33,34]. The restitution
coefficient ranges between 0(a completely inelastic colli-
sion) and 1(an elastic collision). The postcollision velocities
of colliding particlesi and j are related to the precollision
velocities(vi andvj) by the following equations:

vi8 = vi −
1 + c

2
fsvi − vjd · n̂gn̂, s1ad

vj8 = vj +
1 + c

2
fsvi − vjd · n̂gn̂, s1bd

where c is the restitution coefficient and the unit vectorn̂
points from the center of particlei to the center of particlej .
Similarly, the equation for a particle-wall collision with a
restitution coefficient ofcw is

vi8 = vi − s1 + cwdsvi · r̂ dr̂ , s2d

wherer̂ is a unit vector that points from the center of particle
i to the point of contact with the wall. Finally, the equation
for a particle-base collision with a restitution coefficient ofcb
is

vi8 = vi − s1 + cbdfsvi − vbd · r̂ gr̂ , s3d

wherevb is the velocity of the base.
Equations(1) and (2) result in energy changes of

DEij = −
ms1 − c2d

4
fsvi − vjd · n̂g2 s4d

and

DEi
wall = −

ms1 − cw
2d

2
svi · r̂ d2 s5d

for particle-particle and particle-wall collisions, respectively.
These energy changes are always negative for values ofc
and cw less than 1. The energy change associated with a
particle colliding with the base is

DEi
base=

m

2
fs1 + cbd2fsvi − vbd · r̂ g2g

− ms1 + cbdsvi · r̂ dfsvi − vbd · r̂ g, s6d

which can be either positive or negative. Most collisions
with the base impart energy to the particle, although if the
collision occurs as the base is descending, energy is lost.

B. System properties

The simulated trajectories of the particles are used to cal-
culate macroscopic properties of the system such as the
packing factionshd, the granular temperaturesTad, and the
energy dissipation. To facilitate the comparison of the simu-
lation results with different experimental systems, we use
dimensionless parameters. The characteristic length and
mass are taken as the particle diameterd and massm, respec-
tively. A natural characteristic time isÎd/g, whereg is the
gravitational constant. All numerical results presented in this
paper are dimensionless and can be converted to real units
using the conversion factors presented in Table I.

The packing fraction is defined as the ratio of the volume
occupied by particles to the sample volume:

FIG. 1. The model system ofN particles of massm and diameter
d in an infinity tall cylinder of radiusR. The base is vibrated with an
amplitudeA and a frequencyn.

TABLE I. Relations for converting between dimensionless
(quantities with a star) and real(quantities without a star) quantities.

Conversion equation Parameter

R* = R/d Radius

H* = H /d Height

A* = A/d Amplitude

n* = nsd/gd1/2 Frequency

v* = v / sgdd1/2 Velocity

T* = T/ smgdd Temperature

E* = E/ smgdd Energy
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h =
kvpl
V

=
knlpd3

6V
, s7d

where kvpl is the average volume occupied by particles
within a sample volumeV, andknl is the average number of
particles in this volume.

The granular temperature in thea direction is calculated
as

Ta = mkva
2l, s8d

wherekva
2l is the mean-squared velocity in thea direction.

As shown in previous work, these average velocities are not
equal and they vary with position. The directional granular
temperatures for a system consisting of 2100 particles is
shown in Fig. 2.

To study the dissipation in the system we start with the
overall energy balance:

o
np

DEij + o
nw

DEi
wall + o

nb

DEi
base+ DF + DK = 0, s9d

wherenp is the number of particle-particle collisions,nw is
the number of particle-wall collisions, andnb is the number
of particle-base collisions.DF andDK are the differences in
the potential and kinetic energies, respectively, of the system
at the start and the end of the simulation:

DF = o
i=1

N

mgszi,final − zi,initiald, s10d

and

DK = o
i=1

N
1

2
msvi,final

2 − vi,initial
2 d, s11d

where, e.g.,zi,initial and vi,initial are the initial values of the
height and velocity of particlei, respectively.

DF andDK are bounded and fluctuate around steady-state
values. The other sums in the total energy balance, however,
are unbounded as they increase linearly with the total num-
ber of collisions,n=np+nw+nb. Therefore, for a sufficiently
large number of collisions corresponding to an elapsed time
t, Eq. (9) simplifies to

Dpp + Dpw + Pb = 0, s12d

where

Dpp =
1

t
o
np

DEij s13d

is the dissipation due to particle-particle collisions,

Dpw =
1

t
o
nw

DEi
wall s14d

is the dissipation due to particle-wall collisions, and

Pb =
1

t
o
nb

DEi
base s15d

is the power supplied by the vibrating base.
Motivated by the concept of directional granular tempera-

tures for the system[e.g., Eq.(8)], we separate the energy
changes into the three degrees of freedom for translation. For
example, the energy change in thez direction due to a
particle-particle collision is

DEij
i =

m

4
s1 + cd2svr · n̂d2sn̂ · ẑd2

−
m

2
s1 + cdsvr · n̂dsn̂ · ẑdsvr · ẑd, s16d

wherevr =vi −vj is the relative velocity of the two particles
and ẑ is a unit vector pointing in thez direction. A similar
equation defines the energy change in thex andy directions,
DEij

'. The two energy changes are related by

DEij = DEij
' + DEij

i
ø 0. s17d

We may then write two additional energy balances—one for
the direction parallel to the energy input by the base(i.e., the
z direction), and another for the perpendicular directions
(i.e., thex andy directions):

o
np

DEij
i + o

nb

DEi
i + DF + DKi = 0 s18d

and

o
np

DEij
' + o

nw

DEi
' + DK' = 0, s19d

where the superscriptsi and ' denote the parallel and per-
pendicular directions, respectively. Since the particles are
taken as smoothDEi

i=0 for collisions with the wall and
DEi

'=0 for base collisions. Gravity acts in the parallel direc-
tion, hence the potential energy change,DF, appears only in
Eq. (18). In the limit of a large number of collisions, Eqs.
(18) and (19) become

FIG. 2. (Color online) The granular temperaturesTad as a func-
tion of height and radial position in(a) the x and y directions and
(b) the z direction. The contours designate a change inTa of 0.7.
Simulation conditions:N=2100, R=14.5, A=0.348, n=1.13, c
=0.91, andcw=0.68.
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Dpp
i + Pb = 0 s20d

and

Dpp
' + Dpw = 0. s21d

Since energy is never gained at the wallDpwø0, and on
average input at the basePb.0, it follows from Eqs.(20)
and (21) that

Dpp
i

, 0 s22d

and

Dpp
' ù 0. s23d

Like Dpp, Dpp
i is always negative(for inelastic collisions).

Dpp
' , however, is positive, i.e., the collisions supply energy to

the perpendicular directions.Dpp
' does not, therefore, repre-

sent the dissipation of energy. The equality in Eq.(23) ap-
plies only when the walls of the cylinder are elastic and
DEi

'=0. Also, since the total energy change due to a colli-
sion is either zero for an elastic collision or negative for
c,1,

Dpp = Dpp
i + Dpp

' ø 0. s24d

Thus, the amount of energy lost in the parallel direction is
always greater than the energy gained in the perpendicular
direction.

Since we are interested in the amount of energy that is
transferred to the perpendicular direction we find it conve-
nient to define thefractional energy transfer

b = −
Dpp

'

Dpp
i , s25d

which by Eq.(24) is bounded between zero and one. In the
steady state, it follows from Eqs.(20) and (21) that b
=−Dpw/Pb. Thus, in the steady state,b can be interpreted as
the fraction of the power supplied by the vibrating base that
is dissipated by particle-wall collisions. Similarly, the frac-
tion of the power dissipated by particle-particle collisions is
−Dpp/Pb=1−b.

We also investigate the spatial dependence of the particle-
particle dissipation by introducing

Dpp
' sr,zd =

1

t
o
np

DEij
', s26d

where the summation is over collisions that occur in the
volume element atsr ,zd. A similar equation definesDpp

i sr ,zd.
The total system dissipation in the perpendicular direction is

Dpp
' = 2pE

0

` E
0

R

Dpp
' sr,zdr dr dz. s27d

A similar expression gives the relation betweenDpp
i and

Dpp
i sr ,zd. In addition toDpp

' sr ,zd, we also examine the re-
duced distributions

Dpp
' szd = 2pE

0

R

Dpp
' sr,zdr dr , s28d

as well asDpp
i szd, which is defined similarly.

III. RESULTS AND DISCUSSION

We used the simulation to examine the dependence ofb
on the base velocity, the particle-particle restitution coeffi-
cient, and the particle-wall restitution coefficient for systems
of varying particle numberN. Additionally, we investigated
the dependence ofDpp

i sr ,zd and Dpp
' sr ,zd on the packing

fraction and temperature distribution in the system. Finally,
we studied the trends in the radially averaged functions
Dpp

i szd andDpp
' szd as the number of particles, the velocity of

the base, the particle-particle restitution coefficient, and the
particle-wall restitution coefficient were varied. Constant
values ofR=14.5, A=0.348, andcb=0.88 were used in all
simulations presented in this paper.

A. Fractional energy transfer

Figure 3 shows the effect of the base velocity on the trans-
fer of energy between the parallel and perpendicular direc-
tions. Systems consisting of 700–4200 particles were simu-
lated with base velocities ofvb=0.786, 1.57, 3.14, 7.86, 15.7.
b increases with increasing base velocity at constantN and
decreases with increasingN at constantvb. The former trend
is due to the decrease in density as the granular temperature
increases, which leads to more particle-wall collisions. Thus,
more of the energy input by the base is being dissipated at
the wall. IncreasingN at constantvb increases the number of
particle-particle collisions. The increase in the particle-
particle collision rate reduces the fraction of the input power
dissipated at the wall.

It is interesting to note thatb appears to approach an
asymptotic limit asvb increases, at least for 700 and 1400
particle systems. We expect that the limit is dependent on the

FIG. 3. (Color online) Values ofb for systems with 700–4200
particles and base velocities ranging from 0.786 to 15.7. Simulation
conditions wereR=14.5,A=0.348,c=0.91, andcw=0.68.
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values of the particle-particle restitution coefficientc and the
particle-wall restitution coefficientcw. The data in Figs. 4
and 5 support this hypothesis.

The fractional energy transfer was also calculated for sys-
tems of 700–4200 particles with particle-particle restitution
coefficients ranging from 0.8øcø0.99. Figure 4 shows the
values ofb as a function ofc for each system size. As the
particle-particle restitution coefficient approaches unity, the
value of b increases. Whenc=1, according to Eq.(24), b
=1 as all power must be dissipated at the wall. Figure 4 also
shows thatb decreases as the number of particles increases,
as seen previously.

The effect of varying the particle-wall restitution coeffi-
cient at constantN andvb is shown in Fig. 5. As the restitu-
tion coefficient goes to one,b goes to zero. The elastic wall
dissipates no energy, so the dissipationDpp

' goes to zero ac-

cording to Eq.(21). As cw decreases, the wall is able to
dissipate more energy. As in the other graphs, an increase in
the number of particles is seen to decrease the value ofb.

B. Local dissipation

We investigated the dissipation as a function of position in
systems containing 2100 particles(roughly three layers of
particles resting on the base). We determined the packing
fraction and the dissipation in the parallel and perpendicular
directions as functions of height and radial position.

Figure 6(a) shows a contour plot ofDpp
' sr ,zd and Fig. 6(b)

shows a contour plot ofDpp
i sr ,zd. While the latter is negative

everywhere, energy is both dissipated and generated in the
perpendicular direction, depending on the position. The dis-
sipation shows radial and height dependencies for both the
perpendicular and parallel directions similar to those ob-
served for the packing fraction shown in Fig. 6(c). The ex-
trema in the dissipation profiles, however, occur closer to the
base than the maximum in the packing fraction. The maxi-
mum in Dpp

' sr ,zd occurs at the same location as the mini-
mum inDpp

i sr ,zd. It should be noted that the minimum in the
parallel direction is larger in magnitude than the maximum in
the perpendicular direction as required by Eq.(17). The
variations inDpp

' sr ,zd and Dpp
i sr ,zd as a function of height

are different, as shown in Fig. 6. Specifically,Dpp
' sr ,zd is

positive at small heights with a negative minimum in the
middle, while Dpp

i sr ,zd is negative over the entire region,
i.e., energy is never gained in the parallel direction from
particle-particle collisions. It is interesting to note that the
trends observed forDpp

' sr ,zd andDpp
i sr ,zd appear to be the

inverse of those seen in the temperature profiles presented in
Fig. 2. These trends will be explored further in the following
sections.

C. Influence of the number of particles on local dissipation

We varied the number of particles in the system from 700
to 4200, corresponding to approximately one to six layers of

FIG. 4. (Color online) Values ofb for systems with 700–4200
particles and particle-particle restitution coefficients ranging from
0.8 to 0.99. Simulation conditions wereR=14.5, A=0.348, n
=1.13, andcw=0.68.

FIG. 5. (Color online) Values ofb for systems with 700–4200
particles and particle-wall restitution coefficients ranging from 0.5
to 1.00. Simulation conditions wereR=14.5,A=0.348,n=1.13, and
c=0.91.

FIG. 6. (Color online) The counter plots of(a) Dpp
' sr ,zd, (b)

Dpp
i sr ,zd, and (c) the packing fraction as a function of height and

radial position. The contours designate a change of 4.57 in graphs
(a) and(b). Simulation conditions are the same as those for Fig. 2.

ANISOTROPIC ENERGY DISTRIBUTION IN THREE-… PHYSICAL REVIEW E 69, 061308(2004)

061308-5



particles at rest. The base velocity was kept constant atvb
=1.57.

The values ofDpp
' szd and Dpp

i szd for each system are
shown in Fig. 7. The dissipation in the perpendicular direc-
tion exhibits a positive maximum for all the systems studied.
In addition, the systems with 1400 or more particles display
a negative minimum. The 700-particle system does not show
a minimum inDpp

' szd, indicating that the perpendicular en-
ergy dissipation in this system occurs through particle-wall
collisions. Figure 7(a) shows that as the number of particles

increases, the maximum inDpp
' szd increases and the mini-

mum decreases. There is also a small shift in the height at
which the maximum is observed. The shift in the positions of
the extrema to smaller heights is due to the successive cool-
ing and compression of the bed as the number of particles is
increased, as presented in Fig. 7(c).

The dissipation in the parallel direction is always nega-
tive, and exhibits a minimum for all the systems, as seen in
Fig. 7(b). The position of the minimum decreases from
aroundz=1.0 to 0.5 as the number of particles increases.
The heights of these minima coincide with those observed
for the maxima in the perpendicular direction. It should also
be noted that the maximum loss inDpp

i szd is greater than the
maximum gain inDpp

' szd, as expected for inelastic particles.
The heights of the extrema in the local dissipations do not

directly coincide with the maximum in the packing fraction
presented in Fig. 7(c). In fact, the shifts in the height ob-
served in the packing fractions do not appear to influence the
positions of the extrema in the local dissipations. The shifts
in the packing fraction do coincide with an increase in the
breadth of the negative portions of the local dissipations. It is
interesting to note that the systems with packing fractions
greater than 0.1 exhibit a negative minimum inDpp

' szd, while
the other systems do not show this behavior.

D. Influence of the base velocity on local dissipation

We also examined the effect of varying the base velocity
on the dissipation. Systems consisting of 700–4200 particles
were simulated with base velocities of 0.786øvbø15.7.
Figure 8 displays the dissipation in the perpendicular and
parallel directions for a system with 2100 particles at each
base velocity. An increase in the base velocity from 0.786 to
3.14 results in an increase in the positive maximum of
Dpp

' szd. There is a corresponding decrease in the minimum
observed inDpp

i szd. Furthermore, the maximum in the per-
pendicular direction shifts to a larger height as the velocity is
increased. The shifts in the height are related to the expan-
sion of the bed. The velocities ofvb=7.86 and 15.7 exhibit a
decrease in the magnitude of the extrema for the perpendicu-
lar and parallel directions. The decrease does not translate to
a decrease in energy transfer, however, since the curves
broaden noticeably for the larger velocities. The energy
transfer is no longer confined to a small region of heights,
but now extends over a larger region. It is also interesting
that the values ofDpp

' szd are always positive for the two
largest velocities.

In these systems, there appears to be a good correlation
between the shifts in the packing fraction[Fig. 8(c)] and the
shifts observed in the local dissipations. This supports the
conclusions drawn above. Also, the systems with packing
fractions less than 0.1 exhibit no negative minimum in
Dpp

' szd.

E. Influence of the particle-particle restitution coefficient
on local dissipation

We also collected the values ofDpp
i szd and Dpp

' szd for
systems in which the particle-particle restitution coefficient

FIG. 7. (Color online) The dissipation in the(a) perpendicular
and(b) parallel directions, and the(c) packing fraction as a function
of height for values ofN ranging from 700 to 4200 particles(one to
six layers of particles). Other simulation conditions areR=14.5,
A=0.348,n=1.13,c=0.91, andcw=0.68.
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scd was changed(Fig. 9). We variedc from 0.8 to 0.99 for a
system with 2100 particles at a constant base velocity ofvb
=1.57. The dissipation in the perpendicular direction[Fig.
9(a)] reaches the highest maximum and lowest minimum for
the system with the restitution coefficient ofc=0.8. These
extrema decrease in magnitude as the restitution coefficient
increases, and forc=0.99 there is no observable minimum in
Dpp

' szd. Note that forc=0.99, the packing fraction[Fig. 9(c)]
is around 0.1 at its maximum. Unlike the curves in the pre-
vious section, these curves do not broaden. The peak does

not shift and there is only a small decrease in height and
increase in breadth. This may be related to the stationary
height of the packing fraction of these systems. The dissipa-
tion in the parallel direction[Fig. 9(b)] is always negative, as
seen previously. The minima become shallower as the resti-
tution coefficient increases. It should be noted that for the
nearly elastic systemsc=0.99d, the magnitude of the mini-
mum inDpp

i szd is nearly equal to the magnitude of the maxi-
mum in Dpp

' szd, as would be expected for an elastic system.

FIG. 8. (Color online) The dissipation in the(a) perpendicular
and (b) parallel directions and the(c) packing fraction for systems
in which the velocity of the basesvbd was varied from 0.786 to
15.7. The simulation conditions wereN=2100,R=14.5,A=0.348,
n=0.565, 1.13, 2.26, 5.65, 11.3,c=0.91, andcw=0.68.

FIG. 9. (Color online) The dissipation in the(a) perpendicular
and(b) parallel directions and the(c) packing fraction as a function
of height for systems in which the particle-particle restitution coef-
ficient c was varied from 0.8 to 0.99. The simulation conditions
wereN=2100,R=14.5,A=0.348,n=1.13, andcw=0.68.
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F. Influence of the particle-wall restitution coefficient
on local dissipation

The energy balance, Eq.(21), implies that the energy dis-
sipated at the wall will influenceDpp

' szd. We investigated this

relationship by simulating systems with varying values of the
particle-wall restitution coefficient. The results for a system
consisting of 2100 particles and particle-wall restitution co-
efficients ofcw=0.5, 0.68, 0.8, 0.99 are presented below.

The values ofDpp
' szd andDpp

i szd as a function of height
are presented in Fig. 10. The dissipation in the perpendicular
direction [Fig. 10(a)] does not vary greatly, but there is a
noticeable trend. The maximum observed at small heights
becomes less positive and the minimum becomes more nega-
tive ascw approaches unity. This indicates that more energy
is lost through particle-particle collisions as the particle-wall
restitution coefficient approaches unity. The minima in
Dpp

i szd, as seen in Fig. 10(b), indicate that there is less energy
loss in the parallel direction as the particle-wall restitution
coefficient approaches unity. There is also very little change
in the packing fractions of these systems[Fig. 10(c)]. The
maximum of the packing fraction occurs at the same height
for all the systems, but the distribution broadens slowly ascw
approaches unity.

IV. CONCLUSIONS

In this paper, we have examined in detail the energy trans-
fer between the direction parallel to the energy source and
the perpendicular directions in a driven granular system. En-
ergy balances show that the energy changes resulting from
particle-particle collisions in these directions,Dpp

i and Dpp
' ,

are always negative and positive, respectively, for inelastic
systems. We introduced the fractional energy transfer,b
=−Dpp

' /Dpp
i , which in the steady state equals the fraction of

energy input at the base that is dissipated at the wall. We
further examined the quantitative dependence of these quan-
tities on the number of particles, the base velocity, the
particle-particle restitution coefficient, and the particle-wall
restitution coefficient. We then examined the local dissipa-
tions, Dpp

i sr ,zd and Dpp
' sr ,zd. While the former is negative

throughout the system, the latter changes sign.
When an energy source is present in an experimental sys-

tem, it is always anisotropic to some degree, i.e., energy is
supplied preferentially in some direction(s). Therefore, the
differences in the parallel and perpendicular directions ob-
served here must always be present in real systems. Systems
with lower symmetry than the one studied here, e.g., a rect-
angular prism, are expected, in addition, to exhibit differ-
ences in each nonsymmetry-related perpendicular direction.
In experimental systems, rotational degrees of freedom may
provide another channel for the distribution and dissipation
of energy. This could introduce new features in addition to
those observed here.
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FIG. 10. (Color online) The dissipation in the(a) perpendicular
and(b) parallel directions, and the(c) packing fraction as a function
of height for systems in which the particle-wall restitution coeffi-
cient cw was varied. The simulation conditions wereN=2100, R
=14.5,A=0.348,n=1.13, andc=0.91.

P. E. KROUSKOP AND J. TALBOT PHYSICAL REVIEW E69, 061308(2004)

061308-8



[1] I. Goldhirsch and M.-L. Tan, Phys. Fluids8, 1752(1996).
[2] S. E. Esipov and T. Pöschel, J. Stat. Phys.86, 1385(1997).
[3] T. P. C. van Noije and M. H. Ernst, Granular Matter1, 57

(1998).
[4] W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J. P.

Gollub, Chaos9, 682 (1999).
[5] N. Brilliantov and T. Pöschel, Phys. Rev. E61, 2809(2000).
[6] M. Ernst and R. Brito, J. Stat. Phys.109, 407 (2002).
[7] S. McNamara and S. Luding, Phys. Rev. E58, 2247(1998).
[8] P. A. Martin and J. Piasecki, Europhys. Lett.46, 613 (1999).
[9] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys.97, 281

(1999).
[10] V. Garzo and J. Dufty, Phys. Rev. E60, 5706(1999).
[11] K. Feitosa and N. Menon, Phys. Rev. Lett.88, 198301(2002).
[12] R. D. Wildman and D. J. Parker, Phys. Rev. Lett.88, 064301

(2002).
[13] U. M. B. Marconi and A. Puglisi, Phys. Rev. E65, 051305

(2002).
[14] R. Clelland and C. M. Hrenya, Phys. Rev. E65, 031301

(2002).
[15] U. M. B. Marconi and A. Puglisi, Phys. Rev. E66, 011301

(2002).
[16] R. Pagnani, U. M. B. Marconi, and A. Puglisi, Phys. Rev. E

66, 051304(2002).

[17] A. Barrat and E. Trizac, Granular Matter4, 57 (2002).
[18] R. D. Wildman, J. M. Huntley, and D. J. Parker, Phys. Rev.

Lett. 86, 3304(2001).
[19] W. Morgado and E. Mucciolo, Physica A311, 150 (2002).
[20] A. Prevost, D. A. Egolf, and J. S. Urbach, Phys. Rev. Lett.89,

084301(2002).
[21] A. Barrat, E. Trizac, and J. N. Fuchs, Eur. Phys. J. E5, 161

(2001).
[22] A. Barrat and E. Trizac, Phys. Rev. E66, 051303(2002).
[23] A. Barrat and E. Trizac, Eur. Phys. J. E11, 99 (2003).
[24] S. Luding, H. Herrmann, and A. Blumen, Phys. Rev. E50,

3100 (1994).
[25] S. Warr, J. M. Huntley, and G. Jacques, Phys. Rev. E52, 5583

(1995).
[26] V. Kumaran, Phys. Rev. E57, 5660(1998).
[27] J. M. Huntley, Phys. Rev. E58, 5168(1998).
[28] S. McNamara and S. Luding, Phys. Rev. E58, 813 (1998).
[29] P. Sunthar and V. Kumaran, Phys. Rev. E60, 1951(1999).
[30] J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E

63, 061305(2001).
[31] S. McNamara and J. L. Barrat, Phys. Rev. E55, 7767(1997).
[32] S. Luding and S. McNamara, Granular Matter1, 113 (1998).
[33] J. Talbot and P. Viot, Phys. Rev. Lett.89, 064301(2002).
[34] P. E. Krouskop and J. Talbot, Phys. Rev. E68, 021304(2003).

ANISOTROPIC ENERGY DISTRIBUTION IN THREE-… PHYSICAL REVIEW E 69, 061308(2004)

061308-9


