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Anisotropic energy distribution in three-dimensional vibrofluidized granular systems
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We examine the energy flows in a three-dimensional model of a granular system considtingeddistic
hard spheres contained in an open cylinder of raRiusder the influence of gravity. Energy is supplied to the
system in the vertical direction by a vibrating base and is transferred to the perpendicular directions through
particle-particle collisions. We examine how the local and global dissipation of energy by particle-particle and
particle-wall collisions depends on the number of particles, the velocity of the vibrating base, and the restitu-
tion coefficients.
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I. INTRODUCTION a scaling relationship for the average granular temperature.
) ) ) ) Their experimental results were not consistent with the
In an isolated granular system of inelastic partlcles,theory, however. Kumaraj26] sought to improve the theory
energy-dissipating collisions rapidly lead to a total cessationyy, ysing a Maxwellian velocity distribution. This had the
of motion. If an energy source, such as a vibrating wall, iSeffect of modifying the prefactors but not the exponents of
present, a fI_U|d|zed stegdy state can be maintained. _Tr’@,e scaling relations. McNamara and Ludifg] reviewed
steady state is characterized by a balance of the energy inpyh extended the theories and compared their predictions to
with the energy dissipated through particle-particle andpe resyits of event-driven simulations. The comparison con-
particle-boundary collisions. Although there is a superficialtymed that the Kumaran scaling relationship applies only in
resemblance, these nonequilibrium steady-state granular sygte systems. Sunthar and Kumar@®] subsequently ex-
tems have radically different properties from their equilib- janded Kumaran’s analysis to dense systems. More recently,
rium counterparts in systems of elastic particles. Example@rey et al. [30] presented a hydrodynamic description of an
include non-Maxwellian velocity distributiongl—6], a lack open vibrated system in two and three dimensions. They
of energy equipartition between rotational and translationafpgyed that the temperature profile exhibits a minimum as a
degrees of freedom in a system of inelastic rough spheregnction of height, and also obtained an accurate description
[7], and a lack of equipartition of kinetic energy between thegs the energy dissipated.
components of a granular mixtufg—17. , In this paper we explore the anisotropy of the energy con-
Moreover, as has been observed in several studies, thgmed or supplied by particle-particle collisions in a three-
breakdown of equipartition in granular systems extends tQjinensional, vibrofluidized system of inelastic, hard spheres.
the translational degrees of freedom. In an experimentgj;ore specifically, we resolve the total energy supply or con-
study of a three-dimensional vibrofluidized system, W"dma”sumption into directions parallel and perpendicular to the
et al. [18] showed that the granular temperature in the direc—energy source. Energy balances show that collisions con-
tion parallel to th_e energy injection is Iarggr than in.the PeT-sume energy in the parallel direction and supply it to the
pendicular directions. Morgado and Muccidld9)], using @ perpendicular directions. We examine the dependence of
variant of the direct simulation Monte Carlo method, dem-hese quantities on the particle-particle and particle-wall res-
onstrated a similar effect in a two-dimensional vibratedyjytion coefficients, as well as the velocity of the vibrating
granular system. Prevost al. [20] showed that velocity cor- pase. We also examine the dependence ofidhal energy

relations in vibrated monolayers are different in the |°n9itu'consumption/supply on position and the above system pa-
dinal and transverse directions. Bargdtal. [21] studied @ | gmeters.

vertically shaken three-dimensional system and noted that

the injected energy is transferred to the perpendicular direc-

. : . L . . 1. SIMULATION
tions through particle-particle collisions. This results in ap-

parent restitution coefficients that are greater than unity for A. Simulation algorithms

some qollisions,. and lead Bar.nattal..to propose_thg random_ We use a three-dimensional, event-driven simulation of
rgstltutlfon cohefflcllle_:n_t model, '3 Wr}'Ch the Irejtl;[utlon Coeffi- i elastic, hard spheres to model granular particles in a cylin-
cient of each collision Is randomly sampled from a giVen g iy the presence of gravity. Identical spheres with a diam-

dis\t/ribgtion [ﬁl_z.a' f vibrated | dia h b eterd and masan are placed in an infinitely tall cylinder
arious theories of vibrated granular media have been, .y, 5 radiusk (see Fig. 1 The simulation generates a se-

proposec{zﬂt—zq.'Wgrr et al. [25] used EXpressions for the. quence of particle-particle, particle-wall, and particle-base

particle-particle dissipation and the power supplied to obtain.|isions. The base vibrates with a symmetric, saw-tooth
waveform with amplitudéA and frequency. This form was

chosen for simplicity, and changing to another symmetric

*Electronic address: talbot@dug.edu form, e.g., a sine wave, is not expected to have much influ-
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TABLE I. Relations for converting between dimensionless

R (quantities with a starand realquantities without a staquantities.
Conversion equation Parameter
O R*=R/d Radius
H*=H/d Height
@d A*=Ald Amplitude
m v* = p(d/g)*? Frequency
O v*=vl(gd*? Velocity
O O T*=T/(mgd Temperature
O E*=E/(mgd Energy
J—y ' ‘ Vi =vi = (L+e)l(vi - vy) -7, (3)
X

{

wherev,, is the velocity of the base.

. ) Equations(1) and(2) result in energy changes of
FIG. 1. The model system of particles of mass and diameter

d in an infinity tall cylinder of radiuRR. The base is vibrated with an 5
amplitudeA and a frequency. AE. = — m1-c )[(v- —v) AP 4)
ij = 1 J
4
ence on the steady-state properties of the sy§&th The
velocity of the base for this type of waveformig=4Av. and
The simulations were initialized by randomly placing par-

ticles in the cylinder and assigning velocities selected from a m(1 ‘Cfv)

Maxwell distribution. The particles were then allowed to AN = - —— (v, - F)? (5)
evolve from the initial configuration to a steady state before 2

data was collected for the average values presented in this

paper. for particle-particle and particle-wall collisions, respectively.

The particle-particle collisions in the computer simulation These energy changes are always negative for values of
conserve momentum, but dissipate energy. Although severaind c,, less than 1. The energy change associated with a
models have been proposed for inelastic collisifk, 32, particle colliding with the base is
we use the simplest approach, i.e., a constant restitution co-
efficient. This choice has produced results that are in good

m .

agreement with experimef8,9,12,25,33,344 The restitution AEP®e= E[(l +Cp) (Vi = V) - T ]

coefficient ranges between @ completely inelastic colli-

sion) and 1(an elastic collision The postcollision velocities —-m(1 +cy)(v; - D[(vi—vy) -T], (6)

of colliding particlesi andj are related to the precollision

velocities(v; andv;) by the following equations: which can be either positive or negative. Most collisions

with the base impart energy to the particle, although if the

v/ =v, - &[(vi -v;) - AlA, (1a) collision occurs as the base is descending, energy is lost.
2
B. System properties
, +c PN
ViEVit T, [(vi =) -AlA, (1b) The simulated trajectories of the particles are used to cal-

culate macroscopic properties of the system such as the
wherec is the restitution coefficient and the unit vector ~ Packing faction(z), the granular temperatud,), and the
points from the center of particieto the center of particlg. ~ energy dissipation. To facilitate the comparison of the simu-
Similarly, the equation for a particle-wall collision with a lation results with different experimental systems, we use

restitution coefficient of;, is dimensionless parameters. The characteristic length and
mass are taken as the particle diametand massn, respec-
v/ =v; = (1+c,)(v; - T)f, (2) tively. A natural characteristic time igd/g, whereg is the

gravitational constant. All numerical results presented in this
wheref is a unit vector that points from the center of particle paper are dimensionless and can be converted to real units
i to the point of contact with the wall. Finally, the equation using the conversion factors presented in Table I.
for a particle-base collision with a restitution coefficientcgf The packing fraction is defined as the ratio of the volume
is occupied by particles to the sample volume:
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A® andAK are bounded and fluctuate around steady-state
values. The other sums in the total energy balance, however,
are unbounded as they increase linearly with the total num-
ber of collisions,n=ny+n,+n,. Therefore, for a sufficiently
large number of collisions corresponding to an elapsed time
t, Eq. (9) simplifies to

Dpp+ Dpw+ P =0, (12)
where
1
Dpp= YE AE; (13)
n

p

: is the dissipation due to particle-particle collisions,
02468101214 0 2 4 6 8 101214 1

r r Dpw= 2 AE™ (14)

n,
FIG. 2. (Color onling The granular temperatufd,) as a func- "

tion of height and radial position ite) the x andy directions and IS the dissipation due to particle-wall collisions, and
(b) the z direction. The contours designate a changd jnof 0.7.

Simulation conditions:N=2100, R=14.5, A=0.348, v=1.13, c P, = }E AEibase (15)
=0.91, andc,=0.68. ty
3 is the power supplied by the vibrating base.
- <_UQ — (mmd @) Motivated by the concept of directional granular tempera-
\Y 6V ' tures for the systenfe.g., Eq.(8)], we separate the energy

changes into the three degrees of freedom for translation. For
example, the energy change in tlzedirection due to a
particle-particle collision is

where (vy) is the average volume occupied by particles
within a sample volum#&/, and(n) is the average number of
particles in this volume.

The granular temperature in thedirection is calculated

AL 200 AN2A 52
as AE; = 4(1+C) (v, -N)AN - 2)

T,=m(?), (8)
where(v2) is the mean-squared velocity in thedirection.

As shown in previous work, these average velocities are najsherev, =v;-v; is the relative velocity of the two particles
equal and they vary with position. The directional granularand is a unit vector pointing in the direction. A similar
temperatures for a system consisting of 2100 particles igquation defines the energy change insttendy directions,

- g(l OV, AR -DV,-2), (16

shown in Fig. 2. AEj;. The two energy changes are related by
To study the dissipation in the system we start with the N ”
overall energy balance: AE; =AEj + AE; <O0. (17

3 wall base _ We may then write two additional energy balances—one for
nE AR+ 2 AEP+ 2 AR AR +AK =0, (9) the direction parallel to the energy input by the bése, the

z direction, and another for the perpendicular directions
wheren, is the number of particle-particle collisions,, is  (j.e., thex andy directions:

the number of particle-wall collisions, ang is the number

of particle-base collisions\® andAK are the differences in 2 AEj + 2 AE/+AD +AK'=0 (18)
the potential and kinetic energies, respectively, of the system Np

at the start and the end of the simulation:

b Ny Np

Np

and
N
AD=2 MAZ final ~ Zinitial) » (10 > AEﬁ + > AE +AK* =0, (19
i=1 Np Ny
and where the superscriptsand L denote the parallel and per-

N pendicular directions, respectively. Since the particles are
AK=S lm( 2 2 (11) taken as smooth\E/=0 for collisions with the wall and
- ) Ui final = Uiinitial /) » AE;"=0 for base collisions. Gravity acts in the parallel direc-
tion, hence the potential energy chande, appears only in
where, €.9.Z iniiar aNd vj iniia are the initial values of the Eq. (18). In the limit of a large number of collisions, Egs.
height and velocity of particle respectively. (18) and(19) become
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Dpp+ P, =0 (20)

and
Dy, + Dpw=0. (21)

Since energy is never gained at the wall, <0, and on
average input at the basg >0, it follows from Egs.(20)
and(21) that

I
Dpp <0 (22
and
D;p =0. (23
Like Dpp, D“‘)p is always negativefor inelastic collision

Dép, however, is positive, i.e., the collisions supply energy to

the perpendicular direction@ép does not, therefore, repre-
sent the dissipation of energy. The equality in E2B) ap-
plies only when the walls of the cylinder are elastic and

PHYSICAL REVIEW B9, 061308(2004
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FIG. 3. (Color onling Values of B8 for systems with 700—4200
particles and base velocities ranging from 0.786 to 15.7. Simulation
conditions wereR=14.5,A=0.348,c=0.91, andc,,=0.68.

AEﬁ:O. Also, since the total energy change due to a colli-

sion is either zero for an elastic collision or negative for
c<l1,

—-pl 1
Dpp=Dhy+Dpp = 0. (24)

R
Dy(2) = wa D,,(r,2)r dr, (28)
0

as well asDy,(2), which is defined similarly.

Thus, the amount of energy lost in the parallel direction is

always greater than the energy gained in the perpendicular

direction.

Since we are interested in the amount of energy that is

transferred to the perpendicular direction we find it conve
nient to define thdractional energy transfer

1
~Om,
DPP

B (25)

which by Eq.(24) is bounded between zero and one. In the
steady state, it follows from Eq920) and (21) that 8

=-Dpu/ Py Thus, in the steady statg,can be interpreted as

the fraction of the power supplied by the vibrating base that/

is dissipated by particle-wall collisions. Similarly, the frac-
tion of the power dissipated by particle-particle collisions is
~Dpp/ Pp=1-p.

We also investigate the spatial dependence of the particle-

particle dissipation by introducing

o

ij (26)

1
D,(r,2) = ¥2 AE
Mp

where the summation is over collisions that occur in the

volume element &t ,z). A similar equation define@‘['m(r ,2).

Ill. RESULTS AND DISCUSSION

We used the simulation to examine the dependencg of
n the base velocity, the particle-particle restitution coeffi-
cient, and the particle-wall restitution coefficient for systems
of varying particle numbeN. Additionally, we investigated
the dependence OD',‘Jp(r,z) and Dép(r,z) on the packing
fraction and temperature distribution in the system. Finally,
we studied the trends in the radially averaged functions
D‘F‘)p(z) andDép(z) as the number of particles, the velocity of
the base, the particle-particle restitution coefficient, and the
particle-wall restitution coefficient were varied. Constant
alues ofR=14.5, A=0.348, andc,=0.88 were used in all
simulations presented in this paper.

[0]

A. Fractional energy transfer

Figure 3 shows the effect of the base velocity on the trans-
fer of energy between the parallel and perpendicular direc-
tions. Systems consisting of 700—-4200 particles were simu-
lated with base velocities @f,=0.786, 1.57, 3.14, 7.86, 15.7.

B increases with increasing base velocity at conskaaind
decreases with increasimyjat constanv,. The former trend

is due to the decrease in density as the granular temperature
increases, which leads to more particle-wall collisions. Thus,

The total system dissipation in the perpendicular direction i$gre of the energy input by the base is being dissipated at

% R
DéPZZWfo fo D,,(r,2)r dr dz. (27)

A similar expression gives the relation betwe and
D',')p(r,z). In addition toDép(r,z), we also examine the re-
duced distributions

the wall. IncreasindN at constanv,, increases the number of
particle-particle collisions. The increase in the particle-
particle collision rate reduces the fraction of the input power
dissipated at the wall.

It is interesting to note thap appears to approach an
asymptotic limit asvy, increases, at least for 700 and 1400
particle systems. We expect that the limit is dependent on the

061308-4



ANISOTROPIC ENERGY DISTRIBUTION IN THREE-. PHYSICAL REVIEW E 69, 061308(2004)

1.0

0.8

0.6

0.4

0.2

— L L B B | | T 1
0.0 T r . . ; . . . ) 2 4 6 8101214 0 2 4 6 8 101214 0 2 4 6 8 101214
0.80 0.85 0.90 0.95 1.00 r r r

FIG. 6. (Color onling The counter plots ofa) D;p(r,z), (b
FIG. 4. (Color onling Values of 8 for systems with 700-4200 DLp(r,z), and(c) the packing fraction as a function of height and
particles and particle-particle restitution coefficients ranging fromradial position. The contours designate a change of 4.57 in graphs
0.8 to 0.99. Simulation conditions were=14.5, A=0.348, v (a) and(b). Simulation conditions are the same as those for Fig. 2.
=1.13, andc,,=0.68.

cording to Eq.(21). As ¢, decreases, the wall is able to

values of the particle-particle restitution coefficierdand the  dissipate more energy. As in the other graphs, an increase in
particle-wall restitution coefficient,. The data in Figs. 4 the number of particles is seen to decrease the valy® of
and 5 support this hypothesis.

The fractional energy transfer was also calculated for sys- B. Local dissipation
tems of 700-4200 particles with particle-particle restitution
coefficients ranging from 08 ¢<0.99. Figure 4 shows the
values of 8 as a function oft for each system size. As the
particle-particle restitution coefficient approaches unity, th
value of B8 increases. Wher=1, according to Eq(24), 8 arts - ) i >
=1 as all power must be dissipated at the wall. Figure 4 als@i"éctions as functions of height and radial position.
shows tha{3 decreases as the number of particles increases, F19ure @a) shows a c?ntour plot abp(r,2) and Fig. b)
as seen previously. shows a contour plot dep(r ,Z). While the latter is negative

The effect of varying the particle-wall restitution coeffi- €verywhere, energy is both dissipated and generated in the
cient at constanil andu,, is shown in Fig. 5. As the restitu- Perpendicular direction, depending on the position. The dis-
tion coefficient goes to oneg goes to zero. The elastic wall Sipation shows radial and height dependencies for both the

served for the packing fraction shown in Figcp The ex-

trema in the dissipation profiles, however, occur closer to the

We investigated the dissipation as a function of position in
systems containing 2100 particlé®ughly three layers of
doarticles resting on the bgseéVe determined the packing
fraction and the dissipation in the parallel and perpendicular

0.5 —=— N =700 base than the maximum in the packing fraction. The maxi-
mum in D;p(r,z) occurs at the same location as the mini-

0.4 mum inD‘F‘)p(r,z). It should be noted that the minimum in the
parallel direction is larger in magnitude than the maximum in

034 the perpendicular direction as required by E@7). The
variations inDép(r,z) and DLLp(r,z) as a function of height

= are different, as shown in Fig. 6. Specificallp_ (r,2) is

0.2 i . . . .2 Pp .
positive at small heights with a negative minimum in the
middle, while Dﬂ,p(r,z) is negative over the entire region,

0.1 i.e., energy is never gained in the parallel direction from
particle-particle collisions. It is interesting to note that the

0.0 trends observed foD;p(r,z) and DLLp(r,z) appear to be the

e L B inverse of those seen in the temperature profiles presented in

5 06 07 08 09 10 Fig. 2. These trends will be explored further in the following
c, sections.

FIG. 5. (Color onling Values of 8 for systems with 700-4200
particles and particle-wall restitution coefficients ranging from 0.5
to 1.00. Simulation conditions weR=14.5,A=0.348,r=1.13, and We varied the number of particles in the system from 700
c=0.91. to 4200, corresponding to approximately one to six layers of

C. Influence of the number of particles on local dissipation
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FIG. 7. (Color onling The dissipation in th€a) perpendicular
and(b) parallel directions, and th) packing fraction as a function
of height for values oN ranging from 700 to 4200 particlgene to
six layers of particles Other simulation conditions arR=14.5,
A=0.348,r=1.13,¢=0.91, andc,,=0.68.

particles at rest. The base velocity was kept constamt, at

=1.57.

PHYSICAL REVIEW B9, 061308(2004

increases, the maximum 'rD;p(z) increases and the mini-
mum decreases. There is also a small shift in the height at
which the maximum is observed. The shift in the positions of
the extrema to smaller heights is due to the successive cool-
ing and compression of the bed as the number of particles is
increased, as presented in Figc)7

The dissipation in the parallel direction is always nega-
tive, and exhibits a minimum for all the systems, as seen in
Fig. 7(b). The position of the minimum decreases from
aroundz=1.0 to 0.5 as the number of particles increases.
The heights of these minima coincide with those observed
for the maxima in the perpendicular direction. It should also
be noted that the maximum Ioss%p(z) is greater than the
maximum gain ierép(z), as expected for inelastic particles.

The heights of the extrema in the local dissipations do not
directly coincide with the maximum in the packing fraction
presented in Fig. (¢). In fact, the shifts in the height ob-
served in the packing fractions do not appear to influence the
positions of the extrema in the local dissipations. The shifts
in the packing fraction do coincide with an increase in the
breadth of the negative portions of the local dissipations. It is
interesting to note that the systems with packing fractions
greater than 0.1 exhibit a negative minimuml)gp(z), while
the other systems do not show this behavior.

D. Influence of the base velocity on local dissipation

We also examined the effect of varying the base velocity
on the dissipation. Systems consisting of 700—4200 particles
were simulated with base velocities of 0.A86,<15.7.
Figure 8 displays the dissipation in the perpendicular and
parallel directions for a system with 2100 particles at each
base velocity. An increase in the base velocity from 0.786 to
3.14 results in an increase in the positive maximum of
D;p(z). There is a corresponding decrease in the minimum
observed inD'F',p(z). Furthermore, the maximum in the per-
pendicular direction shifts to a larger height as the velocity is
increased. The shifts in the height are related to the expan-
sion of the bed. The velocities of,=7.86 and 15.7 exhibit a
decrease in the magnitude of the extrema for the perpendicu-
lar and parallel directions. The decrease does not translate to
a decrease in energy transfer, however, since the curves
broaden noticeably for the larger velocities. The energy
transfer is no longer confined to a small region of heights,
but now extends over a larger region. It is also interesting
that the values ofD;p(z) are always positive for the two
largest velocities.

In these systems, there appears to be a good correlation
between the shifts in the packing fractifffig. 8c)] and the
shifts observed in the local dissipations. This supports the
conclusions drawn above. Also, the systems with packing

The values ongp(z) and D‘r‘,p(z) for each system are fractions less than 0.1 exhibit no negative minimum in
shown in Fig. 7. The dissipation in the perpendicular direc-D;p(z).
tion exhibits a positive maximum for all the systems studied.

In addition, the systems with 1400 or more particles display

a negative minimum. The 700-particle system does not show
1

a minimum inDp

p

(2), indicating that the perpendicular en-

E. Influence of the particle-particle restitution coefficient
on local dissipation

ergy dissipation in this system occurs through particle-wall We also collected the values @, ,(z) and D, (2) for
collisions. Figure 7a) shows that as the number of particles systems in which the particle-particle restitution coefficient
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FIG. 9. (Color onling The dissipation in th€a) perpendicular
FIG. 8. (Color onling The dissipation in thga) perpendicular ~ and(b) parallel directions and the) packing fraction as a function
and (b) parallel directions and thee) packing fraction for systems Of height for systems in which the particle-particle restitution coef-
in which the velocity of the basé;,) was varied from 0.786 to ficient ¢ was varied from 0.8 to 0.99. The simulation conditions
15.7. The simulation conditions wel=2100,R=14.5,A=0.348,  WereN=2100,R=14.5,A=0.348,r=1.13, andc,,=0.68.
v=0.565, 1.13, 2.26, 5.65, 11.870.91, andc,,=0.68.

(c) was changedFig. 9). We variedc from 0.8 to 0.99 for a . . . .

system with 2100 particles at a constant base velocity,of NOt Shift and there is only a small decrease in height and
=1.57. The dissipation in the perpendicular directigig. increase in breath. Th|s_may be related to the stayor)ary
9(a)] reaches the highest maximum and lowest minimum foneight of the packing fraction of these systems. The dissipa-
the system with the restitution coefficient 0£0.8. These tion in the parallel directiofiFig. b)] is always negative, as
extrema decrease in magnitude as the restitution coefficieigeen previously. The minima become shallower as the resti-
increases, and far=0.99 there is no observable minimum in tution coefficient increases. It should be noted that for the
D,(2). Note that forc=0.99, the packing fractiofFig. Ac)] ~ nearly elastic systeric=0.99, the magnitude of the mini-

is around 0.1 at its maximum. Unlike the curves in the pre-mum inDj (2) is nearly equal to the magnitude of the maxi-
vious section, these curves do not broaden. The peak dogsum inD,(2), as would be expected for an elastic system.

061308-7



P. E. KROUSKOP AND J. TALBOT

300

225

150

=400

-500

0.25

0.20 1

0.15 1

0.10 4

0.05

0.00

FIG. 10. (Color onling The dissipation in th€a) perpendicular
and(b) parallel directions, and th) packing fraction as a function
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relationship by simulating systems with varying values of the
particle-wall restitution coefficient. The results for a system
consisting of 2100 particles and particle-wall restitution co-
efficients ofc,,=0.5, 0.68, 0.8, 0.99 are presented below.

The values ofD;p(z) and D‘gp(z) as a function of height
are presented in Fig. 10. The dissipation in the perpendicular
direction [Fig. 1Q@)] does not vary greatly, but there is a
noticeable trend. The maximum observed at small heights
becomes less positive and the minimum becomes more nega-
tive asc,, approaches unity. This indicates that more energy
is lost through particle-particle collisions as the particle-wall
restitution coefficient approaches unity. The minima in
D“‘)p(z), as seen in Fig. 10), indicate that there is less energy
loss in the parallel direction as the particle-wall restitution
coefficient approaches unity. There is also very little change
in the packing fractions of these systefitdg. 1Qc)]. The
maximum of the packing fraction occurs at the same height
for all the systems, but the distribution broadens slowlg,as
approaches unity.

IV. CONCLUSIONS

In this paper, we have examined in detail the energy trans-
fer between the direction parallel to the energy source and
the perpendicular directions in a driven granular system. En-
ergy balances show that the energy changes resulting from
particle-particle collisions in these directiorﬁ';, and D;p,
are always negative and positive, respectivelg)/, for inelastic
systems. We introduced the fractional energy transger,
:—D;p/D',‘)p, which in the steady state equals the fraction of
energy input at the base that is dissipated at the wall. We
further examined the quantitative dependence of these quan-
tities on the number of particles, the base velocity, the
particle-particle restitution coefficient, and the particle-wall
restitution coefficient. We then examined the local dissipa-
tions, D‘F‘)p(r,z) and Dép(r,z). While the former is negative
throughout the system, the latter changes sign.

When an energy source is present in an experimental sys-
tem, it is always anisotropic to some degree, i.e., energy is
supplied preferentially in some directi@n Therefore, the
differences in the parallel and perpendicular directions ob-
served here must always be present in real systems. Systems
with lower symmetry than the one studied here, e.g., a rect-
angular prism, are expected, in addition, to exhibit differ-
ences in each nonsymmetry-related perpendicular direction.
In experimental systems, rotational degrees of freedom may

of height for systems in which the particle-wall restitution coeffi- Provide another channel for the distribution and dissipation

cient c,, was varied. The simulation conditions weke=2100, R
=14.5,A=0.348,v=1.13, andc=0.91.

F. Influence of the particle-wall restitution coefficient
on local dissipation

The energy balance, E(R1), implies that the energy dis-
sipated at the wall will influenc@;p(z). We investigated this

of energy. This could introduce new features in addition to
those observed here.
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